[GT] ÅÂ¾ç ¿¡³ÊÁö¸¦ ÀÌ¿ëÇÑ ¼ö¼Ò »ý»ê ±â¼ú
By Aniket S. Patankar, SOLAR ENERGY, November 2023, Vol. 264
±âÁ¸ ¼ö¼Ò »ý»ê ½Ã½ºÅÛÀÇ ´ëºÎºÐÀº ȼ® ¿¬·á¿¡ ÀÇÁ¸ÇÑ´Ù. ÇÏÁö¸¸ ÃÖ±Ù MIT °øÇÐÀÚµéÀÌ ¿À·ÎÁö ÅÂ¾ç ¿¡³ÊÁö¸¸ ÀÌ¿ëÇÏ´Â »õ·Î¿î ½Ã½ºÅÛÀ» °³¹ßÇß´Ù.
ÀÌ °úÁ¤¿¡´Â ž翡 ÀÇÇؼ¸¸ ±¸µ¿µÇ´Â »õ·Î¿î ±âÂ÷(train) ¸ð¾çÀÇ ¿øÀÚ·Î ½Ã½ºÅÛÀÌ Æ÷ÇԵȴÙ.
¡®¼Ö¶ó ¿¡³ÊÁö Àú³Î(Solar Energy Journal)¡¯¿¡ ¹ßÇ¥µÈ ÀÌ ¿¬±¸¿¡¼, MIT °øÇÐÀÚµéÀº ¡®ÅÂ¾ç ¿ÈÇÐ ¼ö¼Ò(solar thermochemical hydrogen, STCH)¡¯¸¦ È¿À²ÀûÀ¸·Î »ý»êÇÒ ¼ö ÀÖ´Â ½Ã½ºÅÛ¿¡ ´ëÇÑ °³³ä ¼³°è¸¦ Á¦½ÃÇß´Ù.
ÀÌ ½Ã½ºÅÛÀº žç¿À» ÀÌ¿ëÇÏ¿© ¹°À» Á÷Á¢ ºÐ¸®ÇÏ¿© ¿Â½Ç°¡½º¸¦ ¹èÃâÇÏÁö ¾ÊÀ¸¸é¼ Àå°Å¸® Æ®·°, ¼±¹Ú, ºñÇà±â¿¡ µ¿·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ´Â ±ú²ýÇÑ ¼ö¼Ò ¿¬·á¸¦ »ý»êÇÑ´Ù.
¿À´Ã³¯ ¼ö¼Ò´Â ÁַΠõ¿¬°¡½º ¹× ±âŸ ȼ® ¿¬·á¸¦ »ç¿ëÇÏ¿© »ý»êµÇ¹Ç·Î, ±× »ý»ê ½ÃÀÛºÎÅÍ ÃÖÁ¾ »ç¿ë¿¡ À̸£±â±îÁöÀÇ °úÁ¤À» °í·ÁÇÒ ¶§ ±×¸°(green) ¿¬·á¶ó±âº¸´Ù´Â ¡®È¸»ö¡¯ ¿¡³ÊÁö¿ø¿¡ ´õ °¡±õ´Ù°í º¼ ¼ö ÀÖ´Ù.
ÀÌ¿Í ´ëÁ¶ÀûÀ¸·Î, ÅÂ¾ç ¿ÈÇÐ ¼ö¼Ò(STCH)´Â ±× ¾î¶² ¹°Áúµµ ¹èÃâÇÏÁö ¾Ê´Â ´ë¾ÈÀ» Á¦°øÇÑ´Ù. ±×·¯³ª ¾ÆÁ÷±îÁö´Â, ±âÁ¸ ÅÂ¾ç ¿ÈÇÐ ¼ö¼Ò µðÀÚÀÎÀº È¿À²¼ºÀÌ Á¦ÇÑÀûÀ̾ú´Ù.
½ÇÁ¦·Î µé¾î¿À´Â ÇÞºûÀÇ ¾à 7%¸¸ÀÌ ¼ö¼Ò ¿¬·á·Î Æ÷ÂøµÇ´Âµ¥, ÀÌ´Â ÀÌ ±â¼úÀÌ ¼öÀ²ÀÌ ³·Àº ¹Ý¸é ºñ¿ëÀº ³ô´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù.
ÀÌ¿¡ ºñ¿ë È¿À²ÀûÀÎ ÅÂ¾ç¿ ¼ö¼Ò¸¦ ½ÇÇöÇϱâ À§ÇÏ¿© MIT °øÇÐÀÚµéÀº »õ·Î¿î ¼³°è¸¦ ½ÃµµÇß°í, ÀÌ ±â¼úÀ» ÅëÇØ Å¾ç¿ÀÇ ÃÖ´ë 40%¸¦ È°¿ëÇÏ¿© ÈξÀ ´õ ¸¹Àº ¼ö¼Ò¸¦ »ý¼ºÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ÃßÁ¤µÈ´Ù.
ÀÌ·¯ÇÑ È¿À²¼º Áõ´ë´Â ½Ã½ºÅÛÀÇ ÀüüÀûÀÎ ºñ¿ëÀ» ³·Ãß¾î ÅÂ¾ç ¿ÈÇÐ ¼ö¼Ò¸¦ ¿î¼Û »ê¾÷ÀÇ Å»Åº¼ÒÈ¿¡ µµ¿òÀÌ µÇ´Â ÀáÀçÀûÀ¸·Î È®Àå °¡´ÉÇÏ°í Àú·ÅÇÑ ¿É¼ÇÀ¸·Î ¸¸µé ¼ö ÀÖ´Ù.
ÀÌ¿¡ °øÇÐÀÚµéÀÇ ¸ñÇ¥´Â ´ÙÀ½°ú °°´Ù.
¡°¿ì¸®´Â ¼ö¼Ò¸¦ ¹Ì·¡ÀÇ ¿¬·á·Î »ý°¢ÇÏ°í Àֱ⠶§¹®¿¡, À̸¦ ´ë±Ô¸ð·Î Àú·ÅÇÏ°Ô »ý»êÇÒ ÇÊ¿ä°¡ ÀÖ½À´Ï´Ù. ¿ì¸®´Â 2030³â±îÁö 1 ų·Î±×·¥´ç 1´Þ·¯ÀÇ ºñ¿ëÀ¸·Î ±×¸° ¼ö¼Ò¸¦ ¸¸µé°Ú´Ù´Â ¿¡³ÊÁöºÎÀÇ ¸ñÇ¥¸¦ ÃæÁ·½ÃÅ°·Á ³ë·ÂÇÏ°í ÀÖ½À´Ï´Ù. °æÁ¦¼ºÀ» °³¼±ÇÏ·Á¸é È¿À²¼ºÀ» ³ôÀÌ°í ¿ì¸®°¡ ¼öÁýÇÑ ÅÂ¾ç ¿¡³ÊÁöÀÇ ´ëºÎºÐÀÌ ¼ö¼Ò »ý»ê¿¡ »ç¿ëµÇµµ·Ï ÇØ¾ß ÇÕ´Ï´Ù.¡±
±âÁ¸ ÅÂ¾ç ¿ÈÇÐ ¼ö¼Ò µðÀÚÀΰú ¸¶Âù°¡Áö·Î, MIT °øÇÐÀÚµéÀÌ ¼³°èÇÑ ½Ã½ºÅÛµµ ÇÞºûÀ» ¸ð¾Æ Áß¾Ó ¼ö½Å Ÿ¿ö·Î ¹Ý»çÇÏ´Â ¼ö¹é °³ÀÇ °Å¿ï·Î ±¸¼ºµÈ ¿øÇü ¹è¿À» »ç¿ëÇÑ´Ù. ÀÌ´Â ÁýÁßÇü ÅÂ¾ç¿ ¹ßÀü(concentrated solar plant, CSP)°ú °°Àº ±âÁ¸ ÅÂ¾ç¿ °ø±Þ¿ø°ú ½ÖÀ» ÀÌ·é´Ù.
ÀÌÈÄ ÀÌ »õ·Î¿î ½Ã½ºÅÛÀº ¼ö½Å±âÀÇ ¿À» Èí¼öÇÏ¿© ¹°À» ºÐÇØÇÔÀ¸·Î½á ¼ö¼Ò¸¦ »ý»êÇϴµ¥, ÀÌ °úÁ¤Àº Àü±â¸¦ »ç¿ëÇÏ¿© ¹°À» ºÐ¸®ÇÏ´Â Àü±â ºÐÇØ¿Í´Â ¸Å¿ì ´Ù¸£´Ù.
»õ·Î¿î ½Ã½ºÅÛÀÇ ÇÙ½ÉÀº 2´Ü°è ¿ÈÇÐ ¹ÝÀÀÀÌ´Ù.
ù ¹ø° ´Ü°è¿¡¼´Â Áõ±â ÇüÅÂÀÇ ¹°ÀÌ ±Ý¼Ó¿¡ ³ëÃâµÇ°í, ÀÌ·Î ÀÎÇØ ±Ý¼ÓÀÌ Áõ±â¿¡¼ »ê¼Ò¸¦ »©¾Ñ¾Æ ¼ö¼Ò¸¸ ³²°Ô µÈ´Ù.
ÀÌ ±Ý¼Ó ¡®»êÈ¡¯´Â ¹°ÀÌ ÀÖÀ» ¶§ öÀÌ ³ì½º´Â °Í°ú À¯»çÇÏÁö¸¸ ÈξÀ ´õ ºü¸£°Ô ¹ÝÀÀÇÑ´Ù.
ÀÏ´Ü ¼ö¼Ò°¡ ºÐ¸®µÇ¸é »êȵÈ(¶Ç´Â ³ì½¼) ±Ý¼ÓÀ» Áø°ø¿¡¼ Àç°¡¿ÇÏ¿© ³ìÀÌ ¹ß»ýÇÏ´Â °úÁ¤À» ¿ªÀü½ÃÅ°°í ±Ý¼ÓÀ» Àç»ý½ÃŲ´Ù.
»ê¼Ò°¡ Á¦°ÅµÇ¸é ±Ý¼ÓÀ» ³Ã°¢ÇÏ°í ´Ù½Ã Áõ±â¿¡ ³ëÃâ½ÃÄÑ ´õ ¸¹Àº ¼ö¼Ò¸¦ »ý»êÇÒ ¼ö ÀÖ´Ù. ÀÌ °úÁ¤ÀÌ ¼ö¹é ¹ø ¹Ýº¹µÉ ¼ö ÀÖ´Ù.
MIT °øÇÐÀÚµéÀÇ ½Ã½ºÅÛÀº ÀÌ ÇÁ·Î¼¼½º¸¦ ÃÖÀûÈÇϵµ·Ï ¼³°èµÈ °ÍÀÌ´Ù.
½Ã½ºÅÛ Àüü´Â ¿øÇü Æ®·¢À» µû¶ó ´Þ¸®´Â »óÀÚ ¸ð¾çÀÇ ¿øÀÚ·Î ¿Â÷¿Í À¯»çÇÏ´Ù.
¿Â÷ ÇüÅÂÀÇ ¿øÀڷο¡´Â °¡¿ªÀûÀÎ ºÎ½Ä °úÁ¤À» °Þ´Â ±Ý¼ÓÀÌ Æ÷ÇԵǾî ÀÖ´Ù.
°¢ ¿øÀڷδ ¸ÕÀú ¶ß°Å¿î ½ºÅ×À̼ÇÀ» Åë°úÇϸç, ±×°÷¿¡¼ ÃÖ´ë ¼·¾¾ 1,500µµ¿¡ ´ÞÇϴ ž翿¡ ³ëÃâµÈ´Ù.
ÀÌ ±Ø½ÉÇÑ ¿ÀÌ ¿øÀÚ·ÎÀÇ ±Ý¼Ó¿¡¼ »ê¼Ò¸¦ È¿°úÀûÀ¸·Î ²ø¾î³½´Ù.
ÀÌ °úÁ¤À» ÅëÇØ, ±Ý¼ÓÀº ¡®È¯¿øµÈ¡¯ »óÅ°¡ µÇ¾î Áõ±â¿¡¼ »ê¼Ò¸¦ Èí¼öÇÒ Áغñ°¡ ¸¶Ä£´Ù.
À̸¦ À§ÇØ ¿øÀڷδ ¾à 1,000¡ÆC ¿ÂµµÀÇ ´õ Â÷°¡¿î ½ºÅ×À̼ÇÀ¸·Î À̵¿ÇÏ¿© Áõ±â¿¡ ³ëÃâµÇ¾î ¼ö¼Ò¸¦ »ý»êÇÏ°Ô µÈ´Ù.
¹°·Ð À¯»çÇÑ ÇüÅÂÀÇ ¼³°è¿Í ¸¶Âù°¡Áö·Î ÇϳªÀÇ Àå¾Ö¹°ÀÌ ¹ß»ýÇÑ´Ù. ±×°ÍÀº ȯ¿øµÈ ¿øÀڷΰ¡ ³Ã°¢µÉ ¶§ ¹æÃâµÇ´Â ¿À» ó¸®ÇØ¾ß ÇÏ´Â ³Á¦´Ù.
ÀÌ·¯ÇÑ ¿À» ȸ¼öÇÏ°í Àç»ç¿ëÇÏÁö ¾ÊÀ¸¸é ½Ã½ºÅÛ È¿À²¼ºÀÌ ³Ê¹« ³·¾Æ ½Ç¿ëÀûÀÌÁö ¾Ê°Ô µÈ´Ù.
µÎ ¹ø° °úÁ¦´Â ±Ý¼ÓÀÌ ³ì½½Áö ¾Ê´Â ¿¡³ÊÁö È¿À²ÀûÀÎ Áø°øÀ» ¸¸µå´Â °Í°ú °ü·ÃÀÌ ÀÖ´Ù.
ÀϺΠÇÁ·ÎÅäŸÀÔÀº ±â°è½Ä ÆßÇÁ¸¦ »ç¿ëÇÏ¿© Áø°øÀ» »ý¼ºÇÏÁö¸¸ ÀÌ·¯ÇÑ ÆßÇÁ´Â ´ë±Ô¸ð ¼ö¼Ò »ý»ê¿¡ ³Ê¹« ¿¡³ÊÁö Áý¾àÀûÀÌ°í ºñ¿ëÀÌ ¸¹ÀÌ µç´Ù.
ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ MIT °øÇÐÀÚµéÀº ¿©·¯ °¡Áö ¿¡³ÊÁö Àý¾à ¹æ¹ýÀ» ÅëÇÕÇÏ¿© ¼³°è¿¡ ¹Ý¿µÇÏ¿´´Ù.
½Ã½ºÅÛ¿¡¼ ºüÁ®³ª°¡´Â ¿À» ´ëºÎºÐ ȸ¼öÇϱâ À§ÇØ ¿øÇü Æ®·¢ÀÇ ¹Ý´ëÂÊ¿¡ ÀÖ´Â ¿øÀڷδ ¿º¹»ç¸¦ ÅëÇØ ¿À» ±³È¯ÇÒ ¼ö ÀÖ´Ù. ¶ß°Å¿î ¿øÀڷδ ³Ã°¢µÇ°í Â÷°¡¿î ¿øÀڷδ °¡¿µÇ´Â °ÍÀÌ´Ù. À̸¦ ÅëÇØ ½Ã½ºÅÛ ³»ºÎÀÇ ¿ÀÌ À¯ÁöµÈ´Ù.
MIT °øÇÐÀÚµéÀº ¶ÇÇÑ Ã¹ ¹ø° ¿Â÷ ÁÖÀ§¸¦ µ¹¸é¼ ¹Ý´ë ¹æÇâÀ¸·Î ¿òÁ÷ÀÌ´Â µÎ ¹ø° ¿øÀÚ·Î ¼¼Æ®¸¦ Ãß°¡Çß´Ù.
ÀÌ ¿ÜºÎ ¿øÀÚ·Î ¿Â÷´Â ÀϹÝÀûÀ¸·Î ´õ ³·Àº ¿Âµµ¿¡¼ ÀÛµ¿ÇÏ¸ç ¿¡³ÊÁö¸¦ ¼ÒºñÇÏ´Â ±â°è½Ä ÆßÇÁ ¾øÀ̵µ ´õ ¶ß°Å¿î ³»ºÎ ¿Â÷¿¡¼ »ê¼Ò¸¦ ¹èÃâÇÏ´Â µ¥ »ç¿ëµÈ´Ù.
ÀÌ·¯ÇÑ ¿ÜºÎ ¹ÝÀÀ±â´Â ½±°Ô »ê鵃 ¼ö ÀÖ´Â µÎ ¹ø° À¯ÇüÀÇ ±Ý¼ÓÀ» ¿î¹ÝÇÑ´Ù.
¿ÜºÎ ¹ÝÀÀ±â´Â ÁÖÀ§¸¦ µ¹¸é¼ ¿¡³ÊÁö Áý¾àÀûÀÎ Áø°ø ÆßÇÁ¸¦ »ç¿ëÇÏÁö ¾Ê°íµµ ³»ºÎ ¹ÝÀÀ±â¿¡¼ »ê¼Ò¸¦ Èí¼öÇÏ¿© ¿ø·¡ ±Ý¼ÓÀÇ ³ìÀ» È¿°úÀûÀ¸·Î Á¦°ÅÇÏ°Ô µÈ´Ù.
µÎ ¿øÀÚ·Î Æ®·¹ÀÎ ¸ðµÎ ¿¬¼ÓÀûÀ¸·Î ÀÛµ¿ÇÏ¸ç ¼ø¼öÇÑ ¼ö¼Ò¿Í »ê¼ÒÀÇ º°µµ È帧À» »ý¼ºÇÑ´Ù.
°øÇÐÀÚµéÀº °³³ä ¼³°è¿¡ ´ëÇØ »ó¼¼ÇÑ ½Ã¹Ä·¹À̼ÇÀ» ¼öÇàÇßÀ» ¶§ ÅÂ¾ç¿ ¿ÈÇÐ ¼ö¼Ò »ý»ê È¿À²ÀÌ 7%¿¡¼ 40%·Î Çâ»óµÈ´Ù´Â »ç½ÇÀ» ¹ß°ßÇß´Ù.
°øÇÐÀÚµéÀº ¿¡³ÊÁöºÎ ¿¬±¸¼Ò¿¡ À§Ä¡ÇÑ ±âÁ¸ ÁýÁßÇü ž籤 ¹ßÀü ½Ã¼³¿¡¼ ÀÌ ¼³°è¸¦ Å×½ºÆ®Çϱâ À§ÇÑ ÇÁ·ÎÅäŸÀÔÀ» ±¸ÃàÇÒ ¿¹Á¤ÀÌ´Ù.
ÀÌ°ÍÀÌ ¿ÏÀüÈ÷ ±¸ÇöµÇ¸é ½Ã½ºÅÛÀº ž籤 Çʵå Áß¾Ó¿¡ ÀÖ´Â ÀÛÀº °Ç¹°¿¡ ¼ö¿ëµÉ °ÍÀ¸·Î º¸ÀδÙ.
°Ç¹° ³»ºÎ¿¡´Â °¢°¢ ¾à 50°³ÀÇ ¿øÀڷθ¦ °®Ãá Çϳª ÀÌ»óÀÇ ¿Â÷°¡ ¼³Ä¡µÉ °ÍÀÌ´Ù. ÀÌÈÄ ¹ÝÀÀ±â¸¦ ÄÁº£ÀÌ¾î º§Æ®¿¡ Ãß°¡ÇÏ¸é ¼ö¼Ò »ý»êÀ» È®´ëÇÒ ¼ö ÀÖ´Â ¸ðµâÇü ½Ã½ºÅÛÀÌ µÈ´Ù.
- SOLAR ENERGY, November 2023, Vol. 264, ¡°A Comparative Analysis of Integrating Thermochemical Oxygen Pumping in Water-Splitting Redox Cycles for Hydrogen Production,¡± by Aniket S. Patankar, et al. © 2023 Inter-national Solar Energy Society. Published by Elsevier Ltd. All rights reserved.
To view or purchase this article, please visit:
[GT] A Comparative Analysis of Integrating Thermochemical Oxygen Pumping in Water-Splitting Redox Cycles for Hydrogen Production
By Aniket S. Patankar, SOLAR ENERGY, November 2023, Vol. 264
Most conventional systems for producing hydrogen depend on fossil fuels, but a new system developed by MIT engineers uses only solar energy.
This process involves a new, train-like system of reactors that is driven solely by the sun.
In a study recently published in Solar Energy Journal, these engineers lay out the conceptual design for a system that can efficiently produce ¡°solar thermochemical hydrogen.¡±
The system harnesses the sun¡¯s heat to directly split water, producing clean hydrogen fuel that can power long-distance trucks, ships, and planes, while emitting no greenhouse gases.
Today, hydrogen is largely produced from natural gas and other fossil fuels, making the otherwise green fuel more of a ¡°grey¡± energy source when considered from the start of its production to its end use.
In contrast, solar thermochemical hydrogen, or STCH, offers a totally emissions-free alternative. But so far, existing STCH designs have demonstrated limited efficiency.
In fact, only about 7 percent of incoming sunlight is captured as hydrogen fuel. That means the technology is low-yield and high-cost.
However, in a big step toward realizing cost-effective solar-made fuels, the MIT team estimates its new design could harness up to 40 percent of the sun¡¯s heat to generate much more hydrogen.
This increase in efficiency could drive down the system¡¯s overall cost, making STCH a potentially scalable, affordable option to help decarbonize the transportation industry.
According to the researchers, ¡°We¡¯re thinking of hydrogen as the fuel of the future, and there¡¯s a need to generate it cheaply and at scale.
We¡¯re trying to achieve the Department of Energy¡¯s goal, which is to make green hydrogen by 2030, at $1 per kilogram.
To improve the economics, we have to improve the efficiency, and make sure most of the solar energy we collect is used in the production of hydrogen.¡±
Similar to other proposed designs, the MIT system would be paired with an existing source of solar heat, such as a concentrated solar plant (or CSP) which uses a circular array of hundreds of mirrors that collect and reflect sunlight to a central receiving tower.
An STCH system would then absorb the receiver¡¯s heat and direct it to split water and produce hydrogen.
This process is very different from electrolysis, which instead uses electricity to split water.
At the heart of this conceptual STCH system is a two-step thermochemical reaction. In the first step, water in the form of steam is exposed to a metal.
This causes the metal to grab oxygen from the steam, leaving hydrogen behind.
This metal ¡°oxidation¡± is similar to the rusting of iron in the presence of water, but it occurs much faster.
Once hydrogen is separated, the oxidized (or rusted) metal is reheated in a vacuum, which acts to reverse the rusting process and regenerate the metal.
With the oxygen removed, the metal can be cooled and exposed to steam again to produce more hydrogen. This process can be repeated hundreds of times.
The MIT system is designed to optimize this process.
The system as a whole resembles a train of box-shaped reactors running on a circular track.
In practice, this track would be set around a solar thermal source, such as a CSP tower.
The reactors in the train would house the metal that undergoes the reversible rusting process.
Each reactor would first pass through a hot station, where it would be exposed to the sun¡¯s heat at temperatures of up to 1,500 degrees Celsius.
This extreme heat would effectively pull oxygen out of a reactor¡¯s metal.
That metal would then be in a ¡°reduced¡± state - ready to grab oxygen from steam. For this to happen, the reactor would move to a cooler station at temperatures around 1,000 C, where it would be exposed to steam to produce hydrogen.
Other similar STCH concepts have run up against a common obstacle: what to do with the heat released by the reduced reactor as it is cooled.
Without recovering and reusing this heat, the system¡¯s efficiency is too low to be practical.
A second challenge has to do with creating an energy-efficient vacuum where metal can ¡°derust.¡±
Some prototypes generate a vacuum using mechanical pumps, but these pumps are too energy-intensive and costly for largescale hydrogen production.
To address these challenges, the MIT design incorporates several energy-saving work arounds.
To recover most of the heat that would otherwise escape from the system, reactors on opposite sides of the circular track are allowed to exchange heat through thermal radiation; hot reactors get cooled while cool reactors get heated.
This keeps the heat within the system. The researchers also added a second set of reactors that would circle around the first train, moving in the opposite direction.
This outer train of reactors would operate at generally cooler temperatures and would be used to evacuate oxygen from the hotter inner train, without the need for energy-consuming mechanical pumps.
These outer reactors would carry a second type of metal that can also easily oxidize.
As they circle around, the outer reactors would absorb oxygen from the inner reactors, effectively de-rusting the original metal, without having to use energy-intensive vacuum pumps.
Both reactor trains would run continuously and would generate separate streams of pure hydrogen and oxygen.
When the researchers carried out detailed simulations of the conceptual design, they found that it would boost the efficiency of solar thermochemical hydrogen production, from 7 percent to 40 percent.
In the next year, the team will be building a prototype of the system to test at existing concentrated solar power facilities located at Department of Energy laboratories.
When fully implemented, this system would be housed in a little building in the middle of a solar field.
Inside the building, there could be one or more trains each having about 50 reactors.
And it would be a modular system, where reactors could be added to a conveyor belt, scaling up hydrogen production.
- SOLAR ENERGY, November 2023, Vol. 264, ¡°A Comparative Analysis of Integrating Thermochemical Oxygen Pumping in Water-Splitting Redox Cycles for Hydrogen Production,¡± by Aniket S. Patankar, et al. © 2023 Inter-national Solar Energy Society. Published by Elsevier Ltd. All rights reserved.
To view or purchase this article, please visit: