Çõ½Å, ÀÚ±ÞÀÚÁ·°ú ºñ¹°ÁúÈÀÇ ¹®À» ¿´Ù
¸ðµç ¹®¸íÀº Àü·«Àû ¿øÀÚÀç¿¡ ´ëÇÑ Àú·ÅÇÏ°í dzºÎÇÑ Á¢±Ù¿¡ ÀÇÁ¸ÇÏ°í ÀÖ´Ù. ¾à 3õ ³â Àü ûµ¿±â ½Ã´ë´Â ÁַΠûµ¿À» ¸¸µå´Â µ¥ ÇÊ¿äÇÑ ÁÖ¼® °ø±Þ¸ÁÀÌ Áß´ÜµÇ¸é¼ ±× ¸·À» ³»·È´Ù. 21¼¼±â¶ó°í ´Ù¸£Áö ¾Ê´Ù. ÁöÁ¤ÇÐÀû ±äÀå°ú ±ÞÁõÇÏ´Â ¼ö¿ä°¡ °áÇյǾî Çö´ë °æÁ¦¿¡ Áß¿äÇÑ ±¤¹üÀ§ÇÑ ±¤¹°°ú °ü·ÃµÇ¾î À¯»çÇÑ ¹®Á¦µéÀÌ ¾ß±âµÇ°í ÀÖ´Ù. ´ÙÇེ·´°Ôµµ °úÇÐÀÚµéÀÌ Àúºñ¿ë °í¼º´É ´ëüÀç·Î ÀÌ·¯ÇÑ ÀáÀçÀû À§ÇùÀ» ¿ìȸÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» ã°í ÀÖ´Ù. ¾î¶² °ÍµéÀÌ ÀÖÀ¸¸ç ±× ÇöÀç¿Í Àü¸ÁÀº ¾î¶°ÇÒ±î?
1960³â´ë ÀÌÈÄ ¿ì¸®´Â ¸È¼½º ¹æ½ÄÀÇ ¡®¼ºÀåÀÇ ÇÑ°è(litmits to growth)¡¯ »ç°í¹æ½ÄÀÌ Çö½Ç ¼¼°èÀÇ Áøº¸¿¡ ÀÇÇØ ¹Ýº¹ÀûÀ¸·Î ºÎÁ¤µÇ´Â °ÍÀ» ¸ñµµÇØ¿Ô´Ù. ¿Ö ±×·²±î? Çõ½ÅÀ» ÅëÇØ ´õ ÀûÀº °ÍÀ¸·Î ´õ ¸¹Àº ÀÏÀ» ÇÒ ¼ö Àֱ⠶§¹®ÀÌ´Ù.
ÀÌ Çõ½Å °úÁ¤¿¡¼ Àηù´Â ÀÌÁ¦ ¡®ºñ¹°ÁúÈÀÇ ÃÖÀü¼±¡¯À¸·Î ºÒ¸®´Â ÁöÁ¡¿¡ Á¡Á¡ ´õ °¡±îÀÌ ´Ù°¡°¡°í ÀÖ´Ù. ºñ¹°ÁúÈÀÇ ÃÖÀü¼±À̶õ ¿ì¸®ÀÇ ¹®¸íÀÌ Á¡Â÷ÀûÀÎ °¨¼Ò¼¼¿¡ ÀÖ´Â À¯ÇÑÇÑ ÀÚ¿øÀ» ¼ÒºñÇÏ´Â °Í¿¡¼ ¹þ¾î³ª´Â ÁöÁ¡À» ÀǹÌÇÑ´Ù.
ÀÌ·¯ÇÑ Á¡À» °í·ÁÇÒ ¶§, ÀÚ¿øÀÇ °í°¥À» ÀüÁ¦ Á¶°ÇÀ¸·Î ÇÏ´Â ¼ÒÀ§ ¡®Å» ¼ºÀ塯 Á¤Ã¥Àº Àΰ£ÀÇ »ýÈ°¼öÁØÀ» ¶³¾î¶ß¸± »Ó¸¸ ¾Æ´Ï¶ó Àå±âÀûÀÎ Áö¼Ó °¡´É¼ºÀ» ÈѼÕÇÒ »ÓÀÌ´Ù.
¿ª»ç¸¦ ÅëƲ¾î Çõ½ÅÀº ¿ì¸®·Î ÇÏ¿©±Ý ±âÁ¸¿¡´Â ±Øº¹ÇÒ ¼ö ¾ø´Â À庮À» °á±¹¿¡´Â ±Øº¹ÇÒ ¼ö ÀÖµµ·Ï ÇØÁÖ¾ú´Ù. ¹°·Ð 1770³â°æ »ê¾÷Çõ¸íÀÌ ½ÃÀÛµÉ ¶§±îÁö ÀÌ·¯ÇÑ Çõ½ÅÀº ¼ö¼¼±â¿¡ °ÉÃÄ ÁøÇàµÇ´Â ´À¸° °úÁ¤À̾ú´Ù. ÇÏÁö¸¸ °©Àڱ⠰øÀå, öµµ, Àü±â, Á¶¸³ ¶óÀÎ ¹× ±âŸ ¿©·¯ ºÐ¾ß¿¡¼ ¹«¼öÇÑ ¹ßÀüµéÀÌ ºü¸£°Ô ÀÌ·ïÁö¸é¼, ¿À´Ã³¯ ÀηùÀÇ »ýÈ°¼öÁØÀº ³î¶ó¿ï Á¤µµ·Î Çâ»óµÇ¾ú°í, ´ÙÀ½ ¼¼´ë¿¡µµ º¯È¿Í Çõ½ÅÀº °¡¼Ó鵃 °ÍÀ¸·Î º¸ÀδÙ.
¿À´Ã³¯À» º¸ÀÚ. Áö³ ¼ö ³â µ¿¾È ·Îº¿ ½ÇÇè½Ç, µ¥ÀÌÅÍ ¸¶ÀÌ´×, Àΰø Áö´É°ú °°Àº »õ·Î¿î µµ±¸¸¦ ÅëÇØ °úÇÐÀÚ¿Í ¿£Áö´Ï¾î´Â °úÇÐÀû ¹ß°ß¿¡ ÀÚµ¿È¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú´Ù. ÀÌ´Â 19¼¼±â¿Í 20¼¼±â Á¦Á¶¾÷¿¡¼ ÀÚµ¿È¸¦ È°¿ëÇß´ø ¹æ½Ä°ú À¯»çÇÏ´Ù.
°úÇÐÀû ¹ß°ßÀÇ ÀÚµ¿È´Â ¹«Ã´ Áß¿äÇÏ´Ù. ¾Ë´Ù½ÃÇÇ, ÃÖ±Ù ÁöÁ¤ÇÐÀû ±äÀåÀÇ °íÁ¶´Â Çö´ëÀÇ ¼¼°è °æÁ¦°¡ Áß¿äÇÑ ¿øÀÚÀç¿¡ ´ëÇÑ Á¢±Ù¿¡ ¿©ÀüÈ÷ ÀÇÁ¸ÇÏ°í ÀÖÀ½À» »ó±â½ÃÄÑ ÁÖ¾ú°¡ ¶§¹®ÀÌ´Ù.
¿¹¸¦ µé¾î, Àü±â ÀÚµ¿Â÷, dzÂ÷ ¹× ±âŸ ÀÀ¿ë ºÐ¾ß¿¡¼ º¼ ¼ö ÀÖ´Â Çö´ë½Ä °íÈ¿À² ¸ðÅÍ ¹× ¹ßÀü±â´Â ³»±¸¼ºÀÌ ¶Ù¾î³ °í¼º´É ¿µ±¸ ÀÚ¼®À» ÇÊ¿ä·Î ÇÑ´Ù. ÀϺΠÀü¹®°¡µéÀº Àü±â ÀÚµ¿Â÷°¡ ÁÖ·ù¸¦ ÀÌ·ç¸é¼ 2027³â±îÁö ÀÌ·¯ÇÑ ÈñÅä·ù ÀÚ¼® ½ÃÀåÀÌ ¿¬°£ 370¾ï ´Þ·¯·Î ¼ºÀåÇÒ ¼ö ÀÖ´Ù°í ¹Ï°í ÀÖ´Ù.
ÀÌ´Â ÈñÅä·ù ÀÚ¼®ÀÌ °Å´ë ½ÃÀåÀ» Çü¼ºÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¼öÁ¶ ´Þ·¯ ±Ô¸ðÀÇ °ø±Þ¸Á¿¡ ¾ø¾î¼´Â ¾È µÉ ÀÎDz(input) ¿ä¼Ò¶ó´Â ÀǹÌÀÌ´Ù. Á» ´õ Á¤È®ÇÏ°Ô ¸»ÇÏÀÚ¸é, ÀÌ ÀÚ¼®¿¡´Â ÈñÅä·ù ¿ø¼ÒÀÎ ³×¿Àµð¹ÅÀÌ ÇÊ¿äÇÏ´Ù.
ÇÏÁö¸¸ À¯°¨½º·´°Ôµµ, ³×¿Àµð¹Å°ú ±âŸ ÈñÅä·ù¿¡ ´ëÇÑ »ç½Ç»ó µ¶Á¡±ÇÀº Áß±¹ÀÌ º¸À¯ÇÏ°í ÀÖ´Ù. ±× °á°ú Áß±¹ÀÌ °í¼º´É ¿µ±¸ ÀÚ¼® ½ÃÀåÀÇ 80% ÀÌ»óÀ» Á¡À¯ÇÏ°í, Àüü ÈñÅä·ù °¡°ø ¾÷¹«ÀÇ 87%¸¦ ¼öÇàÇÏ°í ÀÖ´Ù. ¹Ì±¹°ú À¯·´¿¬ÇÕÀÌ ³Ý Á¦·Î(net-zoro) ¹Ì·¡¸¦ ±¸ÇöÇϱâ À§ÇØ ¾Õ ´ÙÅõ¾î ³ë·ÂÇÔ¿¡ µû¶ó µÎ »ê¾÷ ¸ðµÎ ±âÇϱ޼öÀûÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÈ´Ù.
±àÁ¤ÀûÀÎ Ãø¸éÀº 2060³â°æ±îÁö ³Ý Á¦·Î ź¼Ò ¹Ì·¡¿¡ ±â¿©ÇÒ ¼ö ÀÖ´Â ¼ö¸¹Àº Çõ½ÅÀÌ ÀÚ¸®¸¦ ¼¼È÷ Àâ°í ÀÖ´Ù´Â µ¥ ÀÖ´Ù.
¿¹¸¦ µé¾î, Â÷¼¼´ë ¿øÀÚ·ÂÀº ÇÑ Áö¿ª ±Ô¸ð¿¡ ´ëÇÑ Àú·ÅÇÑ ´ã¼öÈ¿Í Ã»Á¤ Àü±â¸¦ °¡´ÉÇÏ°Ô ÇÒ °ÍÀ¸·Î º¸ÀδÙ. ¶ÇÇÑ ºñÀç·¡½Ä Ã˸Ŵ ¼ö¼Ò ¿¬·á ÀüÁö¿Í °ü·ÃµÈ ºñ¿ë ¹× °ø±Þ Á¦¾àÀ» Á¦°ÅÇÒ °ÍÀ» º¸ÀåÇÏ°í ÀÖ´Ù. »ý¸í°øÇÐÀº ÀÛ¹° ¼öÈ®·®À» ºü¸£°Ô ´Ã¸®°í ÇØÁ¶·ù¸¦ ±Ã±ØÀûÀÎ µ¿¹° »ç·á·Î ¹Ù²Ù°í ÀÖ´Ù.
Çö½ÇÀûÀÌ°í ½ÇÁ¦ÀûÀÎ °úÇÐÀº °´°üÀû Ž±¸¿Í ½ÇÇèÀ» ±â¹ÝÀ¸·Î ÇÑ´Ù. ¼øÁøÇÑ °¡Á¤À» ±â¹ÝÀ¸·Î ÇÏ´Â ´Ü¼øÇÑ ¼Ö·ç¼ÇÀº ÃÖ»óÀÇ ¼Ö·ç¼ÇÀÌ ¾Æ´Ï´Ù. ¿À´Ã³¯ ¼ÒÀ§ ±×¸° ´ºµôÀÌ ÀÌ·¯ÇÑ ´Ü¼øÇÑ ¼Ö·ç¼ÇÀÇ ÇϳªÀÓÀº ºÐ¸íÇÏ´Ù. ž籤 ÆгÎ, dz·Â ¹ßÀü µîÀÇ ¹æ½ÄÀº È¿À²ÀÇ ÇÑ°è¿¡ ÀÌ¹Ì Á÷¸éÇØ ÀÖ´Ù.
ÁøÁ¤ÇÑ ¼Ö·ç¼ÇÀº ¿ì¸® ÁÖº¯ÀÇ È¯°æÀ» ÃÎÃÎÇÏ°Ô °ËÅäÇÏ¿´À» ¶§, ¿¹±âÄ¡ ¾Ê°Ô µîÀåÇÒ ¼ö ÀÖ°í, ÃÖ±Ù ¿ì¸®´Â ÀÌ·¯ÇÑ ÁøÁ¤ÇÑ ¼Ö·ç¼ÇÀ» ´«À¸·Î ¸ñµµÇÏ°í ÀÖ´Ù.
´Ù½Ã ¿µ±¸ ÀÚ¼®À» À̾߱âÇÏÀÚ¸é, ÁöÁ¤ÇÐÀû Çö½Ç·Î ÀÎÇØ ÀÌ¹Ì ±âÁ¸ ¹æ½ÄÀº Ä¡¸íÀûÀÎ °áÇÔÀ» ³ëÃâÇß´Ù. ¿µ±¸ ÀÚ¼®ÀÌ ¿¬·á ÀüÁö·Î ±¸µ¿µÇ´Â ÀÚµ¿Â÷, Æ®·°, Ç×°ø±â¸¦ Æ÷ÇÔÇÑ ¼ö¸¹Àº °íÈ¿À² ¼Ö·ç¼ÇÀÇ ÇÙ½ÉÀ̱⠶§¹®¿¡ ÀÌ´Â Å« ¹®Á¦°¡ µÈ´Ù.
±×·¯³ª À̹ø¿¡µµ Ç×»ó ±×·¯Çßµí, Çõ½ÅÀÌ ÇØ°áÃ¥À» Á¦½ÃÇÏ°í ÀÖ´Ù. ¿ª»ç¸¦ ÅëÇØ ÀÔÁõµÈ ¹Ù¿Í °°ÀÌ, ½Ã°£°ú »ó»ó·ÂÀÌ ºÐ¸íÇÑ ÇØ°áÃ¥À» Á¦½ÃÇÑ °ÍÀÌ´Ù.
ÃÖ±Ù ÄÉÀӺ긮Áö ´ëÇÐÀÇ ¿¬±¸ÀÚµéÀº ÀÌÀü±îÁö´Â ¿î¼®¿¡¼¸¸ ¹ß°ßµÇ¾ú´ø ÀÚ¼º ºÐÀÚ Å×Æ®¶óųªÀÌÆ®(tetrataenite)¸¦ ´ÏÄÌ°ú öÀ» ÅëÇØ ÇÕ¼ºÇÏ´Â ½Ç¿ëÀû ¹æ¹ýÀ» ¹ß°ßÇß´Ù. ÀÌÀü±îÁö ½ÇÇè½Ç¿¡¼ Å×Æ®¶óųªÀÌÆ®¸¦ ¸¸µé±â À§ÇÑ ½ÃµµµéÀº ºñ½Ç¿ëÀûÀÌ°í ±Ø´ÜÀûÀÎ ¹æ¹ý¿¡ ÀÇÁ¸Çß¾ú´Ù.
±×·¯³ª ¡®¾îµå¹ê½ºµå »çÀ̾ð½º(Advanced Science)¡¯ Àú³Î¿¡ °ÔÀçµÈ ¹Ù¿Í °°ÀÌ, ÈçÇÑ ¿ø¼ÒÀÎ ÀÎÀ» Ãß°¡Çϸé Ưº°ÇÑ Ã³¸®³ª °ªºñ½Ñ ±â¼ú ¾øÀÌ ÀÎÀ§ÀûÀ¸·Î ´ë±Ô¸ð·Î Å×Æ®¶óųªÀÌÆ®¸¦ »ý»êÇÒ ¼ö ÀÖ´Ù. °øÁ¤ÀÌ »ó¿ëȵǸé Å×Æ®¶óųªÀÌÆ® ÀÚ¼®Àº °¡Àå ±Ø´ÜÀûÀÎ ÀÀ¿ë ºÐ¾ß¸¦ Á¦¿ÜÇÑ ¸ðµç ÀÀ¿ë ºÐ¾ß¿¡¼ ÈñÅä·ù ÀÚ¼®À» Àú·ÅÇÏ°Ô ´ëüÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ÃßÁ¤µÈ´Ù.
°í¼º´É ³×¿Àµð¹Å ö ºØ¼Ò ÀÚ¼®Àº Àü±â ÀÚµ¿Â÷ ¸ðÅÍ¿Í Ç³·Â Åͺó ¹ßÀü±â¿¡ ¸Å¿ì Áß¿äÇÑ °ÍÀ̱⠶§¹®¿¡ ÀÌ·¯ÇÑ Çõ½ÅÀº ¸Å¿ì Å« Àǹ̰¡ ÀÖ´Ù. ÇöÀç ±âÁØ, ³×¿Àµð¹Å ö ºØ¼Ò ÀÚ¼®ÀÇ ¼ö¿ä´Â ÃÖ¼Ò 2030³â±îÁö ¿¬°£ 18%¾¿ ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥ ¹ÝÇØ, ±× °ø±Þ·®Àº °°Àº ±â°£ µ¿¾È ¸Å³â 6% ¹Ì¸¸ÀÇ ºñÀ²·Î Áõ°¡ÇÒ °ÍÀ¸·Î ÃßÁ¤µÇ±â ¶§¹®ÀÌ´Ù. ÀÌ·¯ÇÑ ¸·´ëÇÑ ¼ö¿ä °ø±Þ °ÝÂ÷¿¡ µû¸¥ ÀÌÀ±Àº Áß±¹ÀÌ µ¶½ÄÇÏ°Ô µÈ´Ù.
ÄÉÀӺ긮Áö ¿¬±¸ÆÀÀº ÇÕ¼º Å×Æ®¶óųªÀÌÆ®ÀÇ »ó¿ëÈ¿¡ ¾à 5~8³âÀÌ °É¸± °ÍÀ¸·Î ÃßÁ¤ÇÏ°í Àִµ¥, ÀÌ·Î ÀÎÇØ ¼±¸ ±â¾÷µéÀº ¿©ÀüÈ÷ È£ÁÖ, ¸»·¹ÀÌ½Ã¾Æ ¹× ±âŸ ¸î¸î Áö¿ª¿¡¼ ³×¿Àµð¹ÅÀ» ä±¼ÇÏ°í ó¸®Çϱâ À§ÇØ ¾È°£ÈûÀ» ¾µ °ÍÀÌ ºÐ¸íÇÏ´Ù.
°á·ÐÀº ¹«¾ùÀΰ¡?
¿ì¸® ¹®¸íÀº Á¡Á¡ ´õ ºü¸¥ ¼Óµµ·Î ºñ¹°ÁúÈÀÇ ÃÖÀü¼±À» ÇâÇØ ³ª¾Æ°¡°í ÀÖ´Ù. ¿©±â¿¡´Â Å×Æ®¶óųªÀÌÆ®ÀÇ °æ¿ì¿Í ¸¶Âù°¡Áö·Î Á¾Á¾ Áö±¸»ó¿¡ ¾ÆÁ÷ Á¸ÀçÇÏÁö ¾Ê´Â °ÍÀ» ã°í ÀϹÝÀûÀ̰ųª ÈçÇÑ ÅõÀÔ¹°À» »ç¿ëÇÏ¿© Èñ±ÍÇÏ°í °ªºñ½Ñ °ÍÀ» ´ëüÇÏ´Â ¹æ¹ýÀ» ¹ß°ßÇÏ´Â °ÍÀ» Æ÷ÇÔÇÏ°í ÀÖ´Ù. À̴ ö°ú ´ÏÄÌÀ» ¾à°£ÀÇ Àΰú °áÇÕÇÏ¸é ³³À» ±ÝÀ¸·Î ¹Ù²Ù´Â ¿¬±Ý¼ú»çÀÇ ²Þº¸´Ù ÈξÀ ´õ ¸¹Àº °¡Ä¡¸¦ ´õÇÒ ¼ö ÀÖ´Ù´Â ÀǹÌÀÌ´Ù.
¿À´Ã³¯ ¼ÒÀ§ Àü¹®°¡µéÀº ¹Ì·¡ÀÇ Çõ½Å¿¡ ´ëÇÑ °æ·Î¸¦ ¹Ì¸® °¡Á¤ÇÏ¿© ¿©·¯ °¡´ÉÇÑ ¿É¼ÇÀ» Á¦ÇÑÇÏ´Â °æ¿ì°¡ ÀÖ´Ù. ¿ª»ç´Â ÀÌ·¯ÇÑ Á¦ÇÑÀ» °¡ÇÏÁö ¾ÊÀ» ¶§, ÁøÁ¤ÇÑ ¡®°úÇÐÀÇ ¸¶¹ý¡¯ÀÌ ÀÚ¿¬½º·´°Ô ¹ß»ýÇÑ´Ù´Â °ÍÀ» º¸¿©Áá´Ù. ±×¸®°í ÀÌ·¯ÇÑ Çõ½Å¿¡´Â »ó»ó·ÂÀÌ ±â¾÷°¡Àû °úÁ¤À» °ÅÄ¡µµ·Ï ÇÏ´Â °ÍÀÌ Æ÷ÇԵȴÙ.
ÀÌ¿¡ ¿ì¸®´Â ÀÌ·¯ÇÑ »ç½Ç°ú Ãß¼¼¸¦ °í·ÁÇÏ¿© ´ÙÀ½°ú °°Àº ¿¹ÃøÀ» ³»·Áº¼ ¼ö ÀÖÀ» °ÍÀÌ´Ù.
ù°, ÇöÀç Áß±¹Àº ¸¹Àº °ÍÀ» µ¶Á¡ÇÏ°í ÀÖÁö¸¸, ÀÌ´Â ÀϽÃÀûÀÎ °ÍÀÌ µÉ ¼ö ÀÖ´Ù.
19¼¼±â ÃʱîÁö ¸éÀº °¡°øÇϱ⿡ ³Ê¹« ºñ¿ëÀÌ ¸¹ÀÌ µé¾ú±â ¶§¹®¿¡, Áö¹èÀûÀÎ Á÷¹°Àº ¾ç¸ð¿Í ¸®³ÙÀ̾ú´Ù. ÇÏÁö¸¸ °©ÀÚ±â Á¶¸é±â°¡ µîÀåÇÏ¿© ¸ðµç °ÍÀ» ¹Ù²ã³õ¾Ò°í ¹Ì±¹ ³²ºÎ¸¦ ºÎÀ¯ÇÏ°Ô ¸¸µé¾ú´Ù. ¿µ±¸ ÀÚ¼®°ú ±âŸ ÈñÅä·ù ÀÀ¿ë ºÐ¾ß¿¡ ´ëÇÑ ¿À´Ã³¯ Áß±¹ÀÇ ¿µÇâ·ÂÀº Á¶¸é±â¿Í °°Àº ¹æ½ÄÀ¸·Î ¼±¸ ¼¼°èÀÇ Çõ½ÅÀ» ÅëÇØ Á¡Á¡ ´õ ±× ÈûÀ» ÀҾ ¼ö ÀÖ´Ù.
µÑ°, 2020³â´ë¿¡ ¶Ç ´Ù¸¥ µ¹Æı¸·Î ÀÎÇØ Äá°íÀÇ ÄÚ¹ßÆ® Áß´Ü¿¡ ´ëÇÑ Ãë¾à¼ºÀÌ »ç¶óÁú °ÍÀÌ´Ù.
¹Ì±¹ÀÇ ±¹¸³ ¿¬±¸¼Ò ¿£Áö´Ï¾îµé°ú ¾î¹ÙÀΠĶ¸®Æ÷´Ï¾Æ ´ëÇÐ(University of California Irvine) ¿¬±¸ÆÀÀº °¡°Ý º¯µ¿¼º°ú ÁöÁ¤ÇÐÀû ¹®Á¦¿¡ ½Ã´Þ¸®°í ÀÖ´Â ÄÚ¹ßÆ®¸¦ »ç¿ëÇÏÁö ¾Ê°í ¸®Æ¬ ÀÌ¿Â ¹èÅ͸® À½±ØÀ» ¸¸µå´Â ¹æ¹ýÀ» °í¾ÈÇس´Ù.
¡®³×ÀÌó(Nature)¡¯ Àú³Î¿¡ °ÔÀçµÈ ¹Ù¿Í °°ÀÌ, °úÇÐÀÚµéÀº ¿©·¯ ´Ù¸¥ ±Ý¼Ó ¿ø¼Ò¸¦ È¥ÇÕÇÏ¿© ÄÚ¹ßÆ®¿¡ ´ëÇÑ Ç³ºÎÇÑ ´ëü¹°ÀÎ ´ÏÄÌ·Î ±¸¼ºµÈ À½±ØÀÇ ¿ÈÇÐ ±â°èÀû ºÒ¾ÈÁ¤¼ºÀ» ±Øº¹Çß´Ù. ÄÚ¹ßÆ®¿Í ´Þ¸® ´ÏÄÌÀº ºÏ¹Ì¿¡¼ °¡Àå ¸¹ÀÌ ¹ß°ßµÇ´Â ±Ý¼Ó Áß ÇϳªÀÌ´Ù. Áß±¹ÀÌ Áß¾Ó¾ÆÇÁ¸®Ä«¿¡ ÁøÃâÇÏ¿© ±âÁ¸ ÄÚ¹ßÆ®¿¡ ´ëÇÑ ¹Ì±¹ÀÇ °ø±Þ¸ÁÀ» Èçµé¾ú±â ¶§¹®¿¡, ÀÌ µ¹Æı¸´Â ¹Ì±¹ÀÇ ¶Ç ´Ù¸¥ ÀáÀçÀû °ø±Þ¸Á Ãë¾à¼ºÀ» Á¦°ÅÇÏ´Â µ¥µµ µµ¿òÀÌ µÉ °ÍÀ¸·Î º¸ÀδÙ.
¼Â°, ¹é±ÝÁ· ¿ø¼Ò Ã˸ÅÀÇ Çʿ伺À» ÁÙÀ̰ųª ¾ø¾Ö´Â °ÍÀÌ ¿¬·á ÀüÁö Â÷·®ÀÇ °¡°ÝÀ» ³·Ãß´Â µ¥ ¸Å¿ì Áß¿äÇØÁú °ÍÀÌ´Ù.
¾Ï¸ð´Ï¾Æ³ª ¸Þź¿Ã·Î ¿¬·á¸¦ °ø±ÞÇÏ´Â ¡®¿¬·á ÀüÁö Àü±â ÀÚµ¿Â÷¡¯´Â 21¼¼±â Àü¹Ý±â¿¡ ź¼Ò ¹«¹èÃâ¿¡ ´ëÇÑ ÃÖ»óÀÇ ¹æ½ÄÀÏ ¼ö ÀÖ´Ù. ±×·¯³ª ¿À´Ã³¯ ÀÌ ¼Ö·ç¼ÇÀÇ ºñ¿ëÀÌ Àú·ÅÇÏÁö ¾ÊÀº ÀÌÀ¯´Â ¿¬·á¸¦ Àü±â·Î ¹Ù²Ù´Â µ¥ ÇÊ¿äÇÑ ±Í±Ý¼Ó Ã˸Š¶§¹®ÀÌ´Ù.
ÇÏÁö¸¸ ÀÌ ¹®Á¦¸¦ ±Øº¹Çϱâ À§ÇÑ µÎ °¡Áö Å« Çõ½ÅÀÌ ÀÌ·ïÁö°í ÀÖ´Ù.
¼¼°èÀû ÇмúÁö ¡®ACS ijÅи®½Ã½º(ACS Catalysis)¡¯ Àú³Î¿¡ °ÔÀçµÈ ù ¹ø° Çõ½ÅÀº ¼·¾¾ 100µµ ¹Ì¸¸ÀÇ ÀÛµ¿ ¿Âµµ¿¡¼ ¾Ï¸ð´Ï¾Æ·ÎºÎÅÍ ¼ö¼Ò¸¦ È¿À²ÀûÀ¸·Î ¹æÃâÇÒ ¼ö ÀÖ´Â, Ä®½·-À̵̹忡 ÀÇÇØ Áö¿øµÇ´Â ÃÖ÷´Ü ´ÏÄÌ-Ã˸Ÿ¦ Æ÷ÇÔÇÏ°í ÀÖ´Ù.
¡®³×ÀÌó ijÅи®½Ã½º(Nature Catalysis)¡¯¿¡ ±â¼úµÈ µÎ ¹ø° Çõ½ÅÀº ¸Þź¿ÃÀ̳ª ¾Ï¸ð´Ï¾Æ¿¡¼ ¹æÃâµÈ ¼ö¼Ò¸¦ Â÷·®¿¡ µ¿·ÂÀ» °ø±ÞÇÏ´Â µ¥ »ç¿ëµÇ´Â Àü±â·Î È¿À²ÀûÀ¸·Î º¯È¯Çϱâ À§ÇØ Àú·ÅÇÏ°í ½±°Ô ±¸ÇÒ ¼ö ÀÖ´Â ¿ø¼ÒÀΠö, ź¼Ò, Áú¼Ò¸¸À» »ç¿ëÇÏ´Â Ã˸Ÿ¦ Æ÷ÇÔÇÏ°í ÀÖ´Ù.
ÀÌ·¯ÇÑ ¼Ö·ç¼Ç ȤÀº À¯»ç ¼Ö·ç¼ÇµéÀº ±âÁ¸ ³»¿¬ ±â°ü°ú ¹èÅ͸® Àü±â ¿£ÁøÀ» ÇâÈÄ 20~25³â ³» ±¸½ÄÀ¸·Î ¹Ð¾î³¾ °¡´É¼ºÀÌ ³ô´Ù.
* *
Resource List
1. Trends. January 2020. The Trends Editors. Crossing the Dematerialization Frontier.
2. NPR.org. November 8, 2022. Paddy Hirsch. They made a material that doesn¡¯t exist on Earth. That¡¯s only the start of the story.
3. Macro Polo. November 21, 2021. Damien Ma and Joshua Henderson. The Impermanence of Permanent Magnets: A Case Study on Industry, Chinese Production, and Supply Constraints.
4. Foreign Policy. October 27, 2020. Jamil Hijazi and James Kennedy. How the United States Handed China Its Rare-Earth Monopoly.
5. Nature Catalysis. April 25, 2022. Asad Mehmood, Mengjun Gong, Frédéric Jaouen, Aaron Roy, Andrea Zitolo, Anastassiya Khan, Moulay-Tahar Sougrati, Mathias Primbs, Alex Martinez Bonastre, Dash Fongalland, Goran Drazic, Peter Strasser & Anthony Kucernak. High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells.
6. Advanced Functional Materials. September 14, 2022. Sungjin Cho,Dong Yeon Kim,Jung-In Lee,Jisu Kang,Hyeongseok Lee,Gahyun Kim,Dong-Hwa Seo & Soojin Park. Highly Reversible Lithium Host Materials for High-Energy-Density Anode-Free Lithium Metal Batteries.
7. ACS Catalysis. August 19, 2021. Kiya Ogasawara, Takuya Nakao, Kazuhisa Kishida, Tian-Nan Ye, Yangfan Lu, Hitoshi Abe, Yasuhiro Niwa, Masato Sasase, Hideo Hosono & Masaaki Kitano. Ammonia Decomposition over CaNH-Supported Ni Catalysts via an NH2–-Vacancy-Mediated Mars–van Krevelen Mechanism.
8. Nature. September 21, 2022. Rui Zhang, Chunyang Wang, Peichao Zou, Ruoqian Lin, Lu Ma, Liang Yin, Tianyi Li, Wenqian Xu, Hao Jia, Qiuyan Li, Sami Sainio, Kim Kisslinger, Stephen E. Trask, Steven N. Ehrlich, Yang Yang, Andrew M. Kiss, Mingyuan Ge, Bryant J. Polzin, Sang Jun Lee, Wu Xu, Yang Ren & Huolin L. Xin. Compositionally complex doping for zero-strain zero-cobalt layered cathodes.
Innovation Opens Doors to Self-Sufficiency & Dematerialization
Since the 1960s, we¡¯ve seen the Malthusian ¡°Limits to Growth¡± mindset repeatedly discredited by real world progress. Why? Because innovation continues to let us do more with less. In the process, mankind has moved ever-closer to what the Trends editors call the dematerialization frontier; that¡¯s the point beyond which a civilization consumes finite resources at a declining rate, even as wealth continues to rise.
Because of this principle, ¡°de-growth¡± policies not only reduce human standards of living but undermine long-term sustainability.
How is this possible?
Throughout human history, innovation has enabled us to overcome apparently insurmountable barriers. Until the industrial revolution began around 1770, this was a slow process playing out over centuries. Then suddenly, factories, railroads, electricity, assembly lines and myriad other advances enabled an astounding rise in living standards, with change accelerating in each subsequent generation.
Just in the past few years, new tools like robotic laboratories, data mining and artificial intelligence have enabled scientists and engineers to harness automation in scientific discovery similar to the way they had harnessed automation in 19th and 20th century manufacturing.
The recent rise of geopolitical tensions reminds us that the modern global economy is still dependent on access to crucial raw materials. For example, modern high-efficiency motors and generators, found in electric cars, windmills and other applications require durable, high-performance permanent magnets.
By 2027, some experts believe that the market for rare-earth magnets could grow to $37 billion a year as electric vehicles go mainstream. That¡¯s not just a huge market, but it¡¯s an indispensable input to a multi-trillion-dollar supply chain. And those magnets require the rare earth element neodymium.
China holds a virtual monopoly on neodymium and other rare earth elements.
As a result, it controls over 80% of the high-performance permanent magnet market and performs 87% of all rare earth processing. Both industries are expected to grow at exponential rates as the United States and EU scramble to implement a net-zero future.
On the plus side, many innovations are falling into place that might contribute to a net-zero carbon future by around 2060. Next-generation nuclear would enable affordable desalination and clean electricity on a regional scale.
Unconventional catalysts promise to eliminate the cost and supply constraints associated with hydrogen fuel cells. And biotech is rapidly increasing crop yields and turning algae into the ultimate animal feed.
Unfortunately, Green New Deal thinking in places like California typically tries to mandate existing linear solutions based on naïve assumptions, assuming that ¡°experts¡± already know the answers.
However, real science is based on objective inquiry and experiments. And in many cases, the best solutions show up unexpectedly as we scan the environment.
Furthermore, as we¡¯ve discussed in prior issues, known problems with the chemistry of batteries, the physics of power distribution networks, and limits to solar panel and windmill efficiency, render today¡¯s vision underpinning environmental policies, fatally flawed.
Until recently, the geopolitical realities associated with permanent magnets also appeared to be a showstopper. That¡¯s a big deal because permanent magnets are key to many high-efficiency solutions including automobiles, trucks, and aircraft powered by fuel-cells.
Fortunately, as we¡¯ve repeatedly seen throughout history, time and imagination has yielded an apparent solution.
Scientist at Cambridge University recently discovered a practical way to synthesize tetrataenite, a magnetic molecule made from nickel and iron, previously found only in meteorites. Prior attempts to make tetrataenite in the laboratory relied on impractical, extreme methods.
However, as explained in the journal Advanced Science, the addition of the common element phosphorus makes it possible to produce tetrataenite artificially and at scale, without any specialized treatment or expensive techniques.
It is estimated that once the process is commercialized, tetrataenite magnets will be able to inexpensively replace rare-earth magnets in all but the most extreme applications.
That¡¯s a big deal since, high-performance neodymium-iron-boron magnets are crucial for EV motors and wind turbine generators. Right now, demand is forecast to grow at 18% per annum through at least 2030.
However, neodymium-iron-boron magnet supply is expected to grow at a rate of less than 6% annually over the same period. This implies a huge demand-supply gap and profit windfall for China.
Since the Cambridge team estimates that commercialization of synthetic tetrataenite will require five to eight years, western companies will still scramble to mine and process neodymium from Australia, Malaysia and a few other sites.
What¡¯s the bottom line?
Our civilization is advancing toward the dematerialization frontier at an accelerating pace. As in the case of tetrataenite, this often involves finding something which does not yet exist on earth and discovering ways to harness it to replace rare and expensive commodities using common inputs.
In this case, combining iron and nickel with a pinch of phosphorus could end up adding much more value than the alchemist¡¯s dream of turning lead into gold.
History shows that real ¡°scientific magic¡± happens naturally when we don¡¯t let experts limit options by pre-supposing the path of future innovation.
Such game-changing breakthroughs involve letting imagination take its entrepreneurial course. This is precisely, what China and a lot of ¡°green zealots¡± are unwilling to do.
Given this trend, we offer the following forecasts for your consideration.
First, like so many of China¡¯s apparent competitive advantages, its rare earth monopoly will prove transitory.
Until the early 19th century, wool and linen were the dominant fabrics because cotton was too expensive to process. Then suddenly, the cotton gin changed all that, and made the southern United States rich.
China¡¯s leverage vis a vis permanent magnets and other rare earth applications is about to evaporate much like that of the sheep herders. This is just one of many unfavorable trends which will undermine China¡¯s 21st century strategic ambitions.
Second, during the 2020s, other breakthroughs will eliminate vulnerability to cut-offs of cobalt from the Congo.
Working with engineers at four U.S. national laboratories, researchers at the University of California Irvine have devised a way to make lithium-ion battery cathodes without using cobalt, which is plagued by price volatility and geopolitical problems.
As explained in the journal Nature, the scientists overcame thermal and chemical-mechanical instabilities of cathodes composed substantially of nickel, an abundant substitute for cobalt; they did so by mixing in several other metallic elements.
Unlike cobalt, nickel is one of the most abundant metals found in North America. With China interfering with America¡¯s relationships in central Africa, this breakthrough will help eliminate another potential supply-chain vulnerability.
Third, reducing or eliminating the need for platinum-group catalysts is crucial if fuel cell vehicles are going to become inexpensive.
For years, the Trends editors have argued that ¡°fuel cell electric vehicles,¡± fueled by ammonia or methanol, offer the best route to delivering zero-emission transportation in the first half of the 21st century.
Today, the cost premium of these solutions is due to the precious metal catalysts required to turn the fuel into electricity. - One exciting solution would cost-effectively leverage two big breakthroughs in catalysis. The first, described in the journal ACS Catalysis, involves a state-of-the-art Nickel-catalyst, supported by a calcium-imide, that can efficiently releases hydrogen from ammonia at operating temperatures below 100o C.
The second, described in Nature Catalysis involves a catalyst using only the cheap and readily available elements iron, carbon, and nitrogen to efficiently transform hydrogen released from the methanol or ammonia into electricity used to power the vehicle. These or similar solutions will make both internal combustion engines and battery-electric engines, essentially obsolete over the next 20-to-25 years. And,
Fourth, contrary to Green New Deal fantasies, wind and solar will not form the base of the 21st century economic pyramid.
The laws of physics, chemistry and economics render this vision implausible. The big danger lies in wasting finite resources on this ¡°pipe dream,¡± as many in the ¡°expert class¡± want to do. Next generation nuclear fission, combined with coal, natural gas and petroleum will enable virtually all of human civilization to cross the dematerialization frontier by 2100.
The breakthroughs discussed in this segment simply demonstrate why the ¡°limits to growth¡± mindset dominating so many of today¡¯s experts is fatally flawed. - Because of its unique culture of entrepreneurial innovation coupled with unparalleled access to human capital, minerals, energy, and food, the United States will be the biggest winner.
Meanwhile, China will be a big loser as its repressive culture, demographic decline and limited natural resources impede its upward progress. Europe, South Korea and Japan can still win big by aggressively innovating.
Resource List
1. Trends. January 2020. The Trends Editors. Crossing the Dematerialization Frontier.
2. NPR.org. November 8, 2022. Paddy Hirsch. They made a material that doesn¡¯t exist on Earth. That¡¯s only the start of the story.
3. Macro Polo. November 21, 2021. Damien Ma and Joshua Henderson. The Impermanence of Permanent Magnets: A Case Study on Industry, Chinese Production, and Supply Constraints.
4. Foreign Policy. October 27, 2020. Jamil Hijazi and James Kennedy. How the United States Handed China Its Rare-Earth Monopoly.
5. Nature Catalysis. April 25, 2022. Asad Mehmood, Mengjun Gong, Frédéric Jaouen, Aaron Roy, Andrea Zitolo, Anastassiya Khan, Moulay-Tahar Sougrati, Mathias Primbs, Alex Martinez Bonastre, Dash Fongalland, Goran Drazic, Peter Strasser & Anthony Kucernak. High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells.
6. Advanced Functional Materials. September 14, 2022. Sungjin Cho,Dong Yeon Kim,Jung-In Lee,Jisu Kang,Hyeongseok Lee,Gahyun Kim,Dong-Hwa Seo & Soojin Park. Highly Reversible Lithium Host Materials for High-Energy-Density Anode-Free Lithium Metal Batteries.
7. ACS Catalysis. August 19, 2021. Kiya Ogasawara, Takuya Nakao, Kazuhisa Kishida, Tian-Nan Ye, Yangfan Lu, Hitoshi Abe, Yasuhiro Niwa, Masato Sasase, Hideo Hosono & Masaaki Kitano. Ammonia Decomposition over CaNH-Supported Ni Catalysts via an NH2–-Vacancy-Mediated Mars–van Krevelen Mechanism.
8. Nature. September 21, 2022. Rui Zhang, Chunyang Wang, Peichao Zou, Ruoqian Lin, Lu Ma, Liang Yin, Tianyi Li, Wenqian Xu, Hao Jia, Qiuyan Li, Sami Sainio, Kim Kisslinger, Stephen E. Trask, Steven N. Ehrlich, Yang Yang, Andrew M. Kiss, Mingyuan Ge, Bryant J. Polzin, Sang Jun Lee, Wu Xu, Yang Ren & Huolin L. Xin. Compositionally complex doping for zero-strain zero-cobalt layered cathodes.