[GT] 사람에게 무해한 새로운 항바이러스 물질 개발 外 | ||||
어떤 신기술이 세상을 극적으로 변화시킬까? 세계 최고의 연구소에서 나오는... |
어떤 신기술이 세상을 극적으로 변화시킬까? 세계 최고의 연구소에서 나오는 놀라운 혁신을 독점 소개합니다.
* *
사람에게 무해한 새로운 항바이러스 물질 개발
아직 개발 초기 단계에 있지만 이 새로운 치료법의 광범위한 스펙트럼 활동은 최근 코로나 바이러스 발병과 같은 새롭게 널리 퍼진 바이러스성 질병에 효과적인 것으로 나타났다.
표백제와 같은 오늘날 소위 ‘바이러스성’ 물질은 일반적으로 접촉된 바이러스를 파괴할 수 있지만 동시에 인체에 매우 유독하므로 심각한 피해를 입히지 않으면서 인체에 투입하거나 적용할 수는 없다. 한편, 오늘날의 비 독성 항바이러스 약물은 바이러스 성장을 억제함으로써 작용하지만 바이러스가 이러한 치료법에 돌연변이를 일으키고 저항력을 가질 수 있기 때문에 항상 신뢰할 수 있는 것이 아니다. 그러나 이번 설탕을 통해 개발된 새로운 종류의 항바이러스 물질은 바이러스를 광범위하게 파괴하면서 인간에게는 무해하다.
변형된 당 분자는 단순히 바이러스의 성장을 제한하는 것뿐만 아니라 바이러스의 외부 표피를 파괴하여 사멸시킨다. 또한 이 새로운 접근 방식은 약물 내성을 방지하는 것으로 나타났다.
연구진은 사이클로 덱스트린(cyclodextrins)으로 알려진 천연 포도당 유도체로부터 변형된 분자를 성공적으로 조작했다. 이 분자는 감염 전에 바이러스를 유인하여 파괴시키기 때문에 감염을 방지한다.
이는 새로운 유형의 항바이러스 물질로 역사상 최초로 광범위한 스펙트럼 효능을 보이는, 바이러스 감염 치료에 있어 게임 체인저가 될 가능성이 있다. 또한 잘 알려지지 않은 새로운 감염을 다루는 측면에서도 마찬가지다.
이 분자는 현재 특허를 받았으며 한 스핀-아웃(Spin-Out, 기업의 일부 기술 또는 사업을 분리하여 회사를 만드는 것) 기업이 이 새로운 항바이러스 물질을 계속해서 실제 응용 분야에 적용할 계획이다. 추가적인 실험 이후, 이 물질은 바이러스 감염에 대한 크림, 연고, 나잘 스프레이 및 기타 유사한 형태의 치료제로 사용될 수 있다. 이 새로운 물질은 광범위한 바이러스를 분해할 수 있기 때문에 약물 내성 바이러스에 대해서도 비용 효율적인 새로운 치료법이 될 것으로 기대된다.
- Science Advances, January 29, 2020, Vol. 6, No. 5, “Modified Cyclodextrins As Broad-Spectrum Antivirals,” by Samuel T. Jones, et al. ⓒ 2020 American Chemical Association for the Advancement of Science. All rights reserved.
To view our purchase this article, please visit:
https://advances.sciencemag.org/content/6/5/eaax9318
* *
만능 줄기 세포를 ‘전분화능’으로 되돌리는 방법이 개발되다
정자와 난자의 결합에 따라 발생하는 접합자(Zygotic) 게놈 활성화는 우리 삶의 시작을 표시하는 것이다. 수정란(zygotes)으로 불리는 그 결과로 생긴 초기 배아(early embryos)는 전분화능(totipotency, 모든 세포로 분화할 수 있는 능력)으로 알려진 특성으로 전체 어떤 기관으로도 발달할 수 있다. 이러한 전분화능 세포는 발달 계층의 꼭대기에 위치하며, 만능 배아 줄기 세포(pluripotent embryonic stem cells)를 능가하는 모든 세포 유형의 최대 능력을 갖추고 있다.
주목할 만한 것은 이러한 전분화능 접합자(수정란) 세포가 만능으로 성숙함에 따라 그들의 전분화능력을 잃는다는 점이다. 그러나 현재 싱가포르의 과학자들은 만능 세포를 조작하여 이전에는 수정란에만 존재한다고 생각되는 전분화능 능력을 획득하는 방법을 발견했다. 이것은 포유동물 발달의 초기 형성에서 전분화능이 어떻게 형성되는지에 대한 핵심적인 통찰력을 제공할 뿐만 아니라, 이전에 탐구되지 않은 잠재적인 세포 요법에 대한 새로운 문을 열어주고 있다.
이 연구는 만능 배아 줄기 세포를 페트리접시 배양기에서 전분화능으로 유도할 수 있는, NELFA 로 불리는 전분화능 유발 성장 인자를 확인했다. NELFA는 세포의 유전자 조절 및 대사 네트워크에 특정 변화를 일으킴으로써 이러한 일을 가능케 한다. 구체적으로, NELFA는 수정란에서만 활성이고 배아 줄기 세포에서는 침묵하는 특정 유전자를 재활성화시키는 능력을 갖고 있다. NELFA는 또한 만능 줄기 세포의 경로를 사용하여 에너지를 변경할 수 있다. 이러한 모든 변화로 인해 만능 줄기 세포가 ‘전분화능 상태’로 되돌아가도록 한다.
배아 외부의 세포에서 전분화능을 유도하는 이 방법을 발견하는 것은 또한 치료 목적을 위해 최대 세포 가소성을 가진 세포를 조작하는 수단을 제공한다. 이것은 재생 의학, 특히 세포 대체 요법의 잠재적 응용성을 증대시키고 있다.
이 연구의 최종 목표는 연구 결과를 쇠약성 질병 및 발달 장애의 치료와 같은 임상 응용을 위한 신속하고 효율적인 세포 재프로그래밍 전략의 개발로 변모시키는 것이다.
- Nature Cell Biology, January 13, 2019, “Maternal Factor NELFA Drives a 2C-Like State in Mouse Embryonic Stem Cells,” by Zhenhua Hu, et al. ⓒ 2020 Springer Nature Limited. All rights reserved.
To view or purchase this article, please visit:
https://www.nature.com/articles/s41556-019-0453-8
* *
갈륨, 인듐, 주석, 비스무트 합금을 사용한 새로운 수소 발생 반응
경제성과 환경 친화성으로 인해 수소는 운송을 포함한 수많은 응용 분야에서 화석 연료 및 배터리 전기 에너지의 매력적인 대안이다. 그러나 밀도가 낮기 때문에 수소를 효율적으로 운반하기가 어렵고 기존의 온보드(onboard) 수소 생성 방법은 느리고 에너지 집약적이다.
최근 한 중국 연구팀이 연료 전지와 함께 사용하기 위해 실시간 주문형 수소 생성 시스템을 엔지니어링하는 데 큰 진전을 이루었다. 그들은 이 결과를 「신재생에너지 저널(Journal of Renewable and Sustainable Energy)」에 소개했다.
이들 연구진은 갈륨, 인듐, 주석, 비스무트 합금을 사용하여 수소 발생 반응을 촉진시켰다. 이 합금이 물에 담긴 알루미늄 판을 만나면 수소가 생성된다. 이 수소원이 양성자 교환막 연료 전지에 연결되었을 때, 수소의 화학 에너지가 전기 에너지로 변환되었다.
양성자 교환막 연료 전지는 전통적인 발전 방법과 비교할 때 변환 효율이 매우 높다. 빠르게 시작하고 조용히 실행할 수 있다. 또한, 이로 인해 발생하는 유일한 폐기물은 물이므로 환경 친화적이다.
연구진은 비스무트가 없는 갈륨, 인듐 및 주석의 합금과 비교할 때 합금에 비스무트의 첨가가 수소 생성에 큰 영향을 미친다는 점을 발견했다. 합금에 비스무트를 포함시키면 보다 안정적이고 내구성있는 수소 생성 반응이 일어났다. 이 수소 발생 시스템의 설계에서 또 다른 중요한 요소는 합금을 재활용하는 능력이다. 이는 비용 및 환경 영향을 최소화하는 데 도움이 된다.
물론 이 새로운 수소 발생기와 연료 전지가 운송 및 기타 응용 분야의 상용 솔루션이 되기 전에 몇 가지 문제는 여전히 해결되어야 한다. 예를 들어, 반응 후 혼합물 분리를 위한 기존의 방법은 부식 및 오염 문제를 유발할 수 있으며 수소 반응 공정에서 열 소산도 최적화해야 한다.
이러한 난제가 해결되면 이 기술은 운송부터 무수히 많은 휴대용 장치에 이르는 다양한 응용 분야에 사용될 수 있다.
- Journal of Renewable and Sustainable Energy, January 28, 2020, “Instant Hydrogen Production Using Ga-In-Sn-Bi Alloy-Activated AI-Water Reaction for Hydrogen Fuels Cells,” by Shuo Xu, et al. ⓒ 2020 AIP Publishing LLC. All rights reserved.
To view or purchase this article, please visit:
https://aip.scitation.org/doi/10.1063/1.5124371
* *
더 얇고 유연한 미래의 터치 스크린 물질 개발
호주의 연구자들이 미래의 터치 스크린을 위한 매우 얇고 유연한 전자 물질을 개발했다. 이 물질을 사용하면 터치 스크린을 신문처럼 인쇄 할 수 있고, 둥글게 말 수도 있다. 이 터치 반응 기술은 최근 「네이처 일렉트로닉스(Nature Electronics)」 저널에 소개되었는데, 기존 터치 스크린 물질보다 100배나 더 얇기 때문에 튜브처럼 감을 수 있다.
새로운 전도성 시트를 만들기 위해 연구자들은 액체 금속 화학을 사용하여 휴대폰 터치 스크린에 공통인 박막을 사용하고 이를 3D에서 2D로 축소했다. 이 나노 박막은 기존 전자 기술과 쉽게 호환되며 놀라운 유연성으로 인해 신문처럼 롤투롤 공정을 통해 제조될 수 있다. 오늘날의 휴대 전화 터치 스크린은 대부분 투명한 물질, 인듐-주석-산화물로 만들어졌으며 전도성이 높지만 매우 취약하다.
이에 이들 연구원들이 제작한 매우 얇고 유연한 이 물질은 구부릴 수 있고 비틀 수 있으며 현재 터치 스크린을 제조하는 느리고 값 비싼 방식보다 훨씬 저렴하고 효율적으로 만들 수 있다. 또한 2D로 변환하면 더 투명해 지므로 더 많은 빛을 통과하고 에너지를 절약할 수 있다.
이 재료는 LED 및 터치 디스플레이와 같은 다른 많은 광전자 응용 분야뿐만 아니라 미래의 스마트 창으로도 사용될 수 있다. 또한 연구팀은 개념 증명으로서 이미 이 신소재를 사용하여 작동하는 터치 스크린을 만들었으며 기술에 대한 특허를 신청했다.
- Nature Electronics, January 24, 2020, “Flexible Two-Dimensional Indium Tin Oxide Fabricate Using a Liquid Metal Printing Technique,” by Robi S. Datta, et al.
ⓒ 2020 Springer Nature Limited. All rights reserved.
To view or purchase this article, please visit:
https://www.nature.com/articles/s41928-019-0353-8
* *
웨어러블 제품에 적합한 새로운 배터리 개발
오늘날 전자 제품은 주머니와 지갑 등 어디에나 나타나고 있고, 점차적으로 더 피부에 닿거나 옷에 부착되고 있다. 그러나 웨어러블 전자 제품은 편안하지 않고 화학 물질 누출 또는 연소로 인해 안전을 위협할 수 있는 부피가 크고 단단한 배터리에서 전력을 끌어 내야하는 필요성으로 인해 상당히 제한되어왔다.
그러나 최근 스탠포드 연구진은 일반 배터리에 적용되는 가연성 제품보다 더 안전하게 전력을 저장하기 위해 특수한 유형의 플라스틱에 기반하는 부드럽고 신축성이 있는 배터리를 개발했다. 이 새로운 신축성 배터리는 최근 「네이처 커뮤니케이션스(Nature Communications)」에 소개되었다.
배터리에 플라스틱 또는 폴리머를 사용하는 것은 새로운 방식은 아니다. 한동안 리튬 이온 배터리는 폴리머를 전해질로 사용했는데, 이는 음이온을 배터리의 양극으로 전달하는 화학 물질이기도 하다. 그러나 이러한 고분자 전해질은 유동성 겔이며, 경우에 따라 누출되거나 불꽃으로 파열될 수 있다.
이러한 위험을 피하기 위해, 이들이 개발한 새로운 중합체는 끈적거리지 않고 견고하고 신축성이 있다. 그러함에도 여전히 배터리의 극 사이에서 효과적으로 전하를 운반하는 것으로 나타났다. 실험 테스트에서 이 실험용 배터리는 압착, 접힘, 그리고 원래 길이의 거의 두 배로 늘어 나도 일정한 출력을 유지했다.
이 프로토 타입은 일반적인 크기의 배터리보다 약 절반 반 정도의 에너지를 저장한다. 이를 보완하기 위해 이들 연구팀은 이 신축성 배터리의 에너지 밀도를 높이고 더 큰 버전의 기기를 구축하며, 향후 실험을 통해 실제 상황에서도 성능을 입증하기 위해 노력하고 있다. 이 장치의 잠재적 응용 분야 중 하나는 스탠포드에서 개발 중인 바디넷(BodyNet) 웨어러블 기술의 일부로 심박수 및 기타 중요한 징후를 모니터링하기 위해 피부에 달라붙도록 설계된 신축성 센서에 전력을 공급하는 것이다.
- Nature Communications, November 26, 2019, “Decoupling of Mechanical Properties and Ionic Conductivity in Supramolecular Lithium-Ion Conductors,” by David G. Mackanic, et al. ⓒ 2019 Springer Nature Limited. All rights reserved.
To view or purchase this article, please visit:
https://www.nature.com/articles/s41467-019-13362-4
Global Technology
What new technologies will dramatically transform your world? We’ll present an exclusive preview of the stunning breakthroughs emerging from the world’s leading research labs.
**
As recently explained in the journal Science Advances, a collaborative team of international scientists has developed a new antiviral substance made from sugar which destroys viruses on contact. This new development has shown promise for the treatment of herpes simplex, hepatitis C, HIV, and Zika virus to name just a few. In the lab, the team demonstrated success in treating numerous viruses responsible for diseases ranging from respiratory infections to genital herpes.
Although it’s still at a very early stage of development, the broad-spectrum activity of this new treatment could make it effective against newly prevalent viral diseases such as the recent coronavirus outbreak.
Today’s so-called ‘virucidal’ substances, such as bleach, are typically capable of destroying viruses on contact, but are extremely toxic to humans and so cannot be taken or applied to the human body without causing serious harm. On the other hand, today’s nontoxic antiviral drugs work by inhibiting virus growth, but they are not always reliable as viruses can mutate and become resistant to these treatments. Developing virucides from sugar allows for the advent of a new type of antiviral drug, which destroys a wide range of viruses yet is non-toxic to humans.
The modified sugar molecules disrupt the outer shell of a virus, destroying it on contact, rather than simply restricting its growth. Furthermore, the new approach has been shown to defend against drug resistance.
The researchers successfully engineered the modified molecules from natural glucose derivatives, known as cyclodextrins. The molecules attract viruses before breaking them down on contact, destroying the virus and fighting the infection.
This is a new type of antiviral and one of the first to ever show broad-spectrum efficacy, it has the potential to be a game-changer in treating viral infections. And it could also be game-changing in terms of dealing with new emerging infections that are not well understood.
The molecule is patented, and a spin-out company is being set up to continue pushing this new antiviral towards real-world applications. After further testing, the substance could be used in creams, ointments, nasal sprays and other similar treatments for viral infections. Since this new material can work to break down a wide range of viruses, it is expected to be a cost-effective new treatment even for drug-resistant viruses.
References
Science Advances, January 29, 2020, Vol. 6, No. 5, “Modified Cyclodextrins As Broad-Spectrum Antivirals,” by Samuel T. Jones, et al. ⓒ 2020 American Chemical Association for the Advancement of Science. All rights reserved.
To view our purchase this article, please visit:
https://advances.sciencemag.org/content/6/5/eaax9318
*****************
Zygotic genome activation which occurs following the union of the sperm and egg marks the beginning of life. The resultant early embryos, termed ‘zygotes’ are capable of generating the entire organism, a property known as totipotency. These totipotent cells sit atop the developmental hierarchy and have the greatest potency of all cell types, surpassing even pluripotent embryonic stem cells. Notably, these totipotent zygote cells lose their totipotency as they mature into pluripotency.
But now, scientists in Singapore have found a way to manipulate pluripotent cells into acquiring the totipotent capacity previously thought to exist only in the zygote. This not only provides key insights into how totipotency is formed during the earliest events in mammalian development, but it opens new doors for potential cell therapies that were previously unexplored.
The study identified a totipotency-inducing growth factor called NELFA, which is capable of driving pluripotent embryonic stem cells into totipotency in a petri dish. NELFA achieves this feat by causing specific changes in the gene regulatory and metabolic networks of the cell. Specifically, NELFA has the ability to reactivate certain genes that are only active in the zygote but are otherwise silent in embryonic stem cells. NELFA is also able to alter the energy using pathways in the pluripotent stem cells. All these changes result in pluripotent stem cells reverting into a “totipotent state.”
Discovering this method of inducing totipotency in cells outside of the embryo also provides a means to engineer cells with maximum cell plasticity for therapeutic purposes. This increases the potential applications of regenerative medicine, especially in cell replacement therapies.
The eventual goal of this research is to translate the findings into the development of rapid and efficient cellular reprogramming strategies for clinical applications, such as in the treatment of debilitating diseases and developmental disorders.
References
Nature Cell Biology, January 13, 2019, “Maternal Factor NELFA Drives a 2C-Like State in Mouse Embryonic Stem Cells,” by Zhenhua Hu, et al. ⓒ 2020 Springer Nature Limited. All rights reserved.
To view or purchase this article, please visit:
https://www.nature.com/articles/s41556-019-0453-8
*****************
Due to its affordability and environmental friendliness, hydrogen is an attractive alternative to fossil fuels and battery-electric energy for many applications including transportation. However, because of its low density, hydrogen is difficult to transport efficiently, and existing onboard hydrogen generation methods are slow and energy-intensive.
Recently, a team of Chinese researchers made major progress in engineering a real-time, on-demand hydrogen generation system for use with fuel cells. They describe their results in the Journal of Renewable and Sustainable Energy.
The researchers used an alloy of gallium, indium, tin, and bismuth to catalyze a hydrogen-generating reaction. When this alloy meets an aluminum plate immersed in water, hydrogen is produced. When this hydrogen source was connected to a proton exchange membrane fuel cell, the chemical energy in the hydrogen was converted into electrical energy.
Compared with traditional methods of electric power generation, proton exchange membrane fuel cells have a very high conversion efficiency. They can start rapidly and run quietly. Moreover, the only waste product they generate is water, making them environmentally friendly.
The researchers found that the addition of bismuth to the alloy had a huge effect on hydrogen generation when compared to an alloy of gallium, indium, and tin without bismuth. Including bismuth in the alloy leads to a more stable and durable hydrogen generation reaction. Another important factor in the design of this hydrogen generation system is the ability to recycle the alloy. That helps minimize cost and environmental impact.
Before new hydrogen generators and fuel cells can become a commercial solution for transportation and other applications, several problems still need to be solved. For instance, existing methods for post-reaction mixture separation can cause corrosion and pollution problems and heat dissipation in the hydrogen reaction process also needs to be optimized.
Once these difficulties are resolved, this technology could be used for applications ranging from transportation to myriad portable devices.
References
Journal of Renewable and Sustainable Energy, January 28, 2020, “Instant Hydrogen Production Using Ga-In-Sn-Bi Alloy-Activated AI-Water Reaction for Hydrogen Fuels Cells,” by Shuo Xu, et al. ⓒ 2020 AIP Publishing LLC. All rights reserved.
To view or purchase this article, please visit:
https://aip.scitation.org/doi/10.1063/1.5124371
*****************
Australian researchers have developed an ultra-thin and ultra-flexible electronic material for the touchscreens of the future, which could be printed and rolled out like a newspaper.
This touch-responsive technology recently explained in the journal Nature Electronics. is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube.
To create the new conductive sheet, researchers used a thin film common in cell phone touchscreens and shrunk it from 3D to 2D, using liquid metal chemistry.
The nano-thin sheets are readily compatible with existing electronic technologies and because of their incredible flexibility, could potentially be manufactured through roll-to-roll processing just like a newspaper.
Today’s cell phone touchscreens are mostly made of a transparent material, indium-tin-oxide, that is very conductive, but also very brittle.
The researchers created a new version that’s supremely thin and flexible. You can bend it, you can twist it, and you could make it far more cheaply and efficiently than the slow and expensive way that we currently manufacture touchscreens. And turning it two-dimensional also makes it more transparent, so it lets through more light and saves energy.
The research published in Nature Electronics shows it’s possible to create printable electronics cheaply by using ingredients you could buy from a hardware store and printing it onto plastics to make the touchscreens of the future.
The material could also be used in many other optoelectronic applications, such as LEDs and touch displays, as well as in future smart windows.
The research team has already used the new material to create a working touchscreen, as a proof-of-concept, and they have applied for a patent for the technology.
References
Nature Electronics, January 24, 2020, “Flexible Two-Dimensional Indium Tin Oxide Fabricate Using a Liquid Metal Printing Technique,” by Robi S. Datta, et al.
ⓒ 2020 Springer Nature Limited. All rights reserved.
To view or purchase this article, please visit:
https://www.nature.com/articles/s41928-019-0353-8
*****************
Electronics are showing up everywhere: on our laps, in our pockets and purses and, increasingly, snuggled up against our skin or sewed into our clothing.
But the adoption of wearable electronics has so far been limited by their need to derive power from bulky, rigid batteries that reduce comfort and may present safety hazards due to chemical leakage or combustion.
Stanford researchers have developed a soft and stretchable battery that relies on a special type of plastic to store power more safely than the flammable formulations used in conventional batteries today. The new stretchable battery was described recently in Nature Communications.
The use of plastics, or polymers, in batteries is not new. For some time, lithium-ion batteries have used polymers as electrolytes - the chemical medium that transports negative ions to the battery’s positive pole. But those polymer electrolytes are flowable gels that could, in some cases, leak or burst into flame.
To avoid such risks, the new polymer is solid and stretchable rather than gooey and potentially leaky. Yet it still efficiently carries an electric charge between the battery’s poles. In lab tests, the experimental battery maintained a constant power output even when squeezed, folded and stretched to nearly twice its original length.
The prototype stores roughly half as much energy, ounce for ounce, as a comparably sized conventional battery. The team is now working to increase the stretchable battery’s energy density, build larger versions of the device and run future experiments to demonstrate its performance outside the lab. One potential application for such a device would be to power stretchable sensors designed to stick to the skin to monitor heart rate and other vital signs as part of the BodyNet wearable technology also being developed at Stanford.
References
Nature Communications, November 26, 2019, “Decoupling of Mechanical Properties and Ionic Conductivity in Supramolecular Lithium-Ion Conductors,” by David G. Mackanic, et al. ⓒ 2019 Springer Nature Limited. All rights reserved.
To view or purchase this article, please visit:
https://www.nature.com/articles/s41467-019-13362-4
*****************
How would you go about returning books to the correct shelves in a large library with the least amount of walking? How would you determine the shortest route for a truck that has to deliver many packages to multiple cities? These are some examples of the “traveling salesman problem,” a type of “combinatorial optimization” problem, which frequently arises in everyday situations. Solving the traveling salesman problem involves searching for the most efficient of all possible routes. As everyone who has ever taken a business school “operations management” class knows, this quickly becomes an overwhelming challenge for humans or conventional computers.
To solve this conundrum, scientists are actively exploring the use of special-purpose integrated circuits. With this method, each state in a traveling salesman problem (for example, each possible route of the delivery truck) is represented by “spin cells,” each having one of two states. Here a circuit that can store the strength of one spin cell state over another represents the distance between two cities for the delivery truck. Using a large system containing the same number of spin cells and circuits as the cities and routes for the delivery truck, we can identify the state requiring the least energy, or the route covering the least distance, thus solving the traveling salesman problem or any other type of combinatorial optimization problem.
However, a major drawback of the conventional way of using integrated circuits to do this is that it requires pre-processing, and the number of components and the time required to input the data increase as the scale of the problem increases. For that reason, this technology has only been able to solve a traveling salesman problem involving a maximum of 16 cities.
However, a group of Japanese researchers aimed to overcome this constraint. They observed that the interactions between each spin cell are linear, which ensured that the spin cells could only interact with the cells near them, prolonging the processing time. So, they decided to arrange the cells differently to ensure that all spin cells could be connected to each other.
To do this, they first arranged the circuits in a two-dimensional array, and the spin cells were arranged separately in a one-dimensional arrangement. The circuits could then read the data and an aggregate of this data was used to switch the states of the spin cells. This means that the number of spin cells required, and the time needed for processing were both drastically reduced.
The researchers presented their findings at the IEEE’s 18th World Symposium on Applied Machine Intelligence and Informatics. The new technique constitutes a fully coupled method and has the potential to solve a traveling salesman problem involving up to 22 cities. The team is hopeful that this technology will have future applications as a high-performance system with low power requirements that will enable office equipment and tablet terminals to easily find optimal solutions for a wide range of combinatorial business problems.
References
Tokyo University of Science, January 23, 2020, “The Easy Route The Easy Way: New Chip Calculates the Shortest Distance in an Instant.” ⓒ 2020 Tokyo University of Science. All rights reserved.
To view this article, please visit:
https://www.tus.ac.jp/en/mediarelations/archive/20200123001.html
*****************
The internet of things (or IoT) spans everything from the smart speakers and Wi-Fi-connected home appliances to manufacturing machines that use connected sensors to manage tasks on an assembly line to warehouses that manage real-time inventory movement to surgeons who can perform extremely precise surgeries with robots. But for these applications, timing is everything: a lagging connection could have disastrous consequences.
Researchers at the University of Pittsburgh’s Swanson School of Engineering are taking on that task, proposing a system that would use currently underutilized resources in an existing wireless channel to create extra opportunities for lag-free connections. The process, which wouldn’t require any additional hardware or wireless spectrum resources, could alleviate traffic backups on networks with many wireless connections, such as those found in smart warehouses and automated factories.
The researchers announced their findings at the Association for Computing Machinery’s 2019 International Conference on Emerging Networking Experiments and Technologies.
The network’s automatic response to channel quality, or the signal-to-noise ratio (or SNR), is almost always a step or two behind. When there is heavy traffic on a channel, the network changes to accommodate it. Similarly, when there is lighter traffic, the network meets it, but these adaptations don’t happen instantaneously. They used that lag - the space between the channel condition change and the network adjustment - to build a side-channel solely for IoT devices where there is no competition and no delay.
This method exploits the existing SNR margin, using it as a dedicated side channel for IoT devices. Lab tests have demonstrated a 90 percent reduction in data transmission delay in congested IoT networks, with a throughput up to 2.5 Mbps over a narrowband wireless link that can be accessed by more than 100 IoT devices at once.
The IoT has an important future in smart buildings, transportation systems, smart manufacturing, cyber-physical health systems, and beyond. This research could remove a very important barrier holding it back.”
References
Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies, December 2019, “EasyPass: Combating IoT Delay with Multiple Access Wireless Side Channels,” by Haoyang Lu, et al. ⓒ 2019 ACM, Inc. All rights reserved.
To view or purchase this article, please visit:
https://dl.acm.org/doi/10.1145/3359989.3365421