딥러닝 레볼루션 | ||||
지은이 : 테런스 J. 세즈노스키(역:안진환) | ||||
출판사 : 한국경제신문 | ||||
출판일 : 2019년 10월 |
■ 책 소개
인공지능, 초연결, 초지능, 자율주행까지 모든 혁신은 딥러닝에서 시작되었다
4차 산업혁명, AI 시대의 미래를 예측하려면 딥러닝에 주목하라
‘스마트폰 혁명’ 이후의 새로운 패러다임은 무엇일까. 누구도 경험하지 못한 미래가 다가오고 있다. ‘딥러닝 혁명’이 바로 그것이다. 딥러닝 혁명에서 시작된 변혁은 산업, 교육, 경제, 문화, 전 영역에 걸쳐 가시화되고 있다. 새로운 패러다임 등장은 필연적으로 승자와 패자를 낳는다. 발 빠르게 적응하는 이와 그렇지 못한 이가 나뉘는 것이다. 얼마 전 소프트뱅크 손정의 회장이 문재인 대통령을 만나 자리에서 “첫째도 AI, 둘째도 AI, 셋째도 AI”라고 힘주어 말했다. 인공지능에 기업과 국가의 경쟁력이 달려 있으며, 인공 지능 개발에 모든 역량을 집중해야 한다는 것이었다. 실제로 4차 산업혁명 열풍과 알파고 충격 이후, 인공지능은 제조업, 통신, 자동차, 서비스업 등 산업뿐만 아니라 교육, 의료, 법조, 행정 등 우리 생활 모든 영역에 깊숙이 들어왔다. 빅데이터와 인공지능이 결합된 서비스가 나의 욕구를 나보다 먼저 정확하게 알고 상품을 추천을 해주는 일은 이제 너무 당연해서 특별하게 느껴지지 않을 정도다.
이제는 앞을 내다보는 질문이 필요한 시점이다. 이와 같은 변화가 어디서 시작되었고, 앞으로 어떻게 될 것이며, 나아가 우리는 무엇을 준비해야 하는지 말이다. 이 책의 저자 테런스 J, 세즈노스키는 인공지능 발전에 결정적 역할을 한 것이 딥러닝이라고 말한다. 딥러닝 없이는 지금과 같은 변화가 없었을 것이며, AI 시대의 미래를 예측하기 위해서는 딥러닝을 알아야 한다는 것이다. 모두의 각광을 받고 있는 빅데이터, 초연결, 자율주행 역시 딥러닝 없이는 불가능했을 성과다. “아무리 많은 데이터를 만들어내도 머신러닝(딥러닝)이 발전하지 않으면 아무 소용이 없다”는 말이 이를 압축적으로 보여준다.
이 책에서 신경과학과 머신러닝 분야의 대가인 세즈노스키는 통찰력 있게 인공지능의 과거와 현재를 돌아보고 미래를 조망한다. 딥러닝은 지금까지 이뤄낸 변화보다 앞으로 훨씬 큰 변화를 가져올 것이다. 하지만 여기에는 ‘궁극적으로’라는 단서가 붙는다. 그 시기가 앞당겨질지 아닐지, 발전의 결과물을 유리하게 이용할지 못할지는 전적으로 우리가 어떻게 하느냐에 달려 있다.
■ 저자 타렌스 J. 세즈노스키
소크생물학연구소(Salk Institute for Biological Studies)의 프랜시스 크릭(Francis Crick) 석좌교수이자 캘리포니아대학교 샌디에이고 캠퍼스(UCSD)의 교수로 재직 중이다. 버락 오바마 행정부의 브레인 이니셔티브(BRAIN Initiative)에서 자문위원으로 활동했으며, 현재 인공지능 분야 최고 학회인 NeurIPS의 의장직을 수행하고 있다. 딥러닝 기술의 초석이 된 볼츠만 머신 알고리즘을 제프리 힌튼과 함께 개발한 것을 비롯해 뉴럴 네트워크의 학습 이론에 대한 다수의 논문을 발표했다.
머신러닝 및 신경과학 최고 권위자 중 한 명인 세즈노스키 교수는 한국에서 열린 ‘2018 인공지능 국제컨퍼런스’에 기조연설자로 참여해, ‘딥러닝 혁명’이라는 주제로 딥러닝의 현황과 미래를 통찰력 있게 조망한 바 있다. 그는 이 책에서 인공지능의 발전에 변곡점 역할을 한 딥러닝 기술이 현재에 이르기까지의 과정, 앞으로 딥러닝이 만들어낼 혁신과 변화에 대해서 풀어내고 있다.
■ 역자 안진환
서울에서 태어나 연세대학교를 졸업했다. 현재 전문번역가로 활발히 활동 중이다. 지은 책으로 『한 줄만 잘 써도 Cool해지는 영작문』 『영어 실무 번역』 등이 있으며, 옮긴 책으로는 『주목하지 않을 권리』 『부자아빠 가난한 아빠 20주년 특별판』 『넛지』 『팀 쿡』 『스티브 잡스』 『조너선 아이브』 『괴짜경제학』 『빌게이츠 @ 생각의 속도』 『노동의 미래』 『전쟁의 기술』 『천재들의 대참사』 『창업자 정신』 『이코노믹 씽킹』 등이 있다.
■ 감수 권정민
세상은 데이터로 이뤄져 있다고 생각하며, 이를 잘 활용하고자하는 목표를 가지고 다양한 데이터 분석 및 활용 방안을 만들고 연구하는 것을 업으로 하고 있다. 카이스트(KAIST) 및 포항공과대학교(POSTECH)에서 산업공학과 전산학을 전공했으며, 다양한 산업군에서 데이터 분석을 수행하고 있다. 옮긴 책으로는 『빅데이터 분석 도구 R 프로그래밍』 『The R Book(Second Edition) 한국어판』『파이썬을 활용한 베이지안 통계』 등이 있으며 『인터넷, 알고는 사용하니?』를 감수했다.
■ 차례
추천사
감수자의 글
서문
1부 지능의 재해석
1장 머신러닝의 부상
2장 인공지능의 재탄생
3장 뉴럴 네트워크의 여명
4장 두뇌 방식의 컴퓨팅
5장 시각 시스템에서 얻은 통찰
· 연대표 133
2부 기술적 영향과 과학적 영향
6장 머신러닝의 미래
7장 알고리즘의 시대
8장 헬로, 미스터 칩스
9장 내부 정보
10장 인식
11장 자연은 인간보다 영리하다
12장 심층 지능
· 연대표
3부 다양한 학습 방법
13장 칵테일파티 문제
14장 홉필드 망과 볼츠만 머신
15장 오류의 역전파
16장 컨볼루션 러닝
17장 보상학습
18장 NIPS
· 연대표
헌사
용어 설명
주